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Abstract

Advances in data collection and storage capacity have made it
increasingly possible to collect highly volatile graph data for anal-
ysis. Existing graph analysis techniques are not appropriate for
such data, especially in cases where streaming or near-real-time
results are required. An example that has drawn significant re-
search interest is the cyber-security domain, where internet com-
munication traces are collected and real-time discovery of events,
behaviors, patterns and anomalies is desired. We propose Met-
ricForensics, a scalable framework for analysis of volatile graphs.
MetricForensics combines a multi-level “drill down" approach, a
collection of user-selected graph metrics and a collection of analy-
sis techniques. At each successive level, more sophisticated metrics
are computed and the graph is viewed at a finer temporal resolu-
tion. In this way, MetricForensics scales to highly volatile graphs
by only allocating resources for computationally expensive analy-
sis when an interesting event is discovered at a coarser resolution
first. We test MetricForensics on three real-world graphs: an en-
terprise IP trace, a trace of legitimate and malicious network traffic
from a research institution, and the MIT Reality Mining proxim-
ity sensor data. Our largest graph has ∼3M vertices and ∼32M
edges, spanning 4.5 days. The results demonstrate the scalabil-
ity and capability of MetricForensics in analyzing volatile graphs;
and highlight four novel phenomena in such graphs: elbows, bro-
ken correlations, prolonged spikes, and strange stars.
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1. Introduction

Given a stream of duration-stamped communication or
contact events, how can we find suspicious behavior, anoma-
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lous activities, etc? How can we do attribution? For exam-
ple, in a computer communication graph, we want say to
flag the interval that we are under attack, as well as the of-
fending IP address (or addresses).

We define a “volatile graph” to be a stream of duration-
stamped edges (in its simplest form: 〈vsrc, vdst, duration〉),
where we assume that there are potentially infinite number
of nodes, and that edges may appear and disappear. Ex-
amples of volatile graphs include IP-to-IP communication
graphs (either at the backbone or at the access-link) as well
as physical proximity graphs (e.g., measured by blue-tooth
connections).

We introduce METRICFORENSICS which given a volatile
graph is able to characterize it and detect interesting events
at multiple levels (both temporally and topologically). At
the global level, METRICFORENSICS computes and monitors
a suite of graph metrics (like the number of active nodes,
the first few eigenvalues, their wavelet transforms) at reg-
ular intervals. Only when a deviation from usual behav-
ior is flagged, we follow through with a “drill down” ap-
proach. We study the offending graph at finer temporal res-
olution, as well as we examine carefully chosen sub-graphs
(community-level) or even individual nodes (local-level) us-
ing local metrics and more sophisticated and time-consuming
analysis techniques (like ego-net analysis). Thus, we are able
to do attribution of the rare event, while maintaining high
processing speed.

The contributions of METRICFORENSICS are as follows:

• Effectiveness: METRICFORENSICS spots strange activi-
ties, like “elbows” (Section 4.1.1), broken correlations
(Section 4.1.2), prolonged spikes (Section 4.1.3), and
strange stars (Section 4.3)

• Scalability: All the components of the system are care-
fully chosen to be not only informative, but also fast to
compute (linear on the measures of interest).

• Flexibility and generality: The METRICFORENSICS frame-
work can easily include several modules in addition to
the described ones, like spectral analysis, PageRank,
etc. Moreover, the method can be applied to any type
of volatile graphs (e.g., email/SMS communications).

The outline of the paper is as follows: Section 1 provides
an introduction to this work. Section 2 presents an overview
of the related work. Section 3 describes our proposed method,
METRICFORENSICS. Section 4 presents experimental results
on 3 real-world volatile graphs. Lastly, Section 5 provides
some concluding remarks.
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2. Background and Related Work

We review the related work in this section. It can be cate-
gorized into four parts: (1) mining static graphs, (2) mining
time-evolving graphs, (3) anomaly detection on graphs and
finally (4) mining time series.

Mining Static Graphs. There has been a lot of research
work on static graph mining. The work can be grouped
into three levels. First, on the graph-level, researchers have
studied the statistical properties of some global metrics (e.g.,
degree distribution, diameter, first eigenvalue, etc) of the
whole graph. Representative work includes [3, 13, 7, 26], etc.
Next, a lot of work is related to mining the graph on the sub-
graph level, including frequent substructure discovery [32],
graph partition and community detection [14, 16]. Finally,
there has been work on mining the graph on the individ-
ual node/edge level as well, including influence propaga-
tion [21], link prediction [24], ranking [15], proximity [30]
and so on. Note that almost all of the previous work deals
with only one of the three levels (graph-level, subgraph level,
or node/edge-level). In contrast, our METRICFORENSICS
works on all the levels in a “drill down” way.

Mining Dynamic Graphs. More recently, there is an in-
creasing interest in mining time-evolving graphs, such as
densification laws and shrinking diameters [23], community
evolution [4, 11], dynamic tensor analysis [29] and so on.
Again, most of the above analyze only one of the three lev-
els (graph-level, subgraph level, or node/edge-level). Ad-
ditionally, they often manually choose a single fixed time-
granularity to perform the analysis. In contrast, METRIC-
FORENSICS performs a multi-level analysis over time.

Anomaly Detection on Graphs. Most of anomaly detec-
tion methods for graph data are based on the minimum de-
scription length (MDL) principle [27, 8]. Other representa-
tive work includes classification-based methods [25], prob-
abilistic measures [12], spectral methods [19, 18] and so on.
For anomaly detection on other types of data, please refer to
a recent survey [10]. In OddBall [2], they explicitly focus on
nodes and interactions are considered implicitly through the
neighborhood subgraphs. Unlike most of existing work, we
consider edge weights in our anomaly detection method.

Mining Time Series. Representative work in this cate-
gory includes similarity search [31], click-through rate es-
timation [1], anomaly detection [28, 22]. Notice that our
METRICFORENSICS can naturally incorporate most of these
methods into the framework, such as BGP-Lens [28].

3. METRICFORENSICS

The flowchart for METRICFORENSICS is depicted in Fig-
ure 1. METRICFORENSICS is comprised of three distinct com-
ponents: (1) a suite of graph metrics, (2) a collection of anal-
ysis techniques, and (3) a multi-level approach. We will de-
scribe each of these below. But first, we will briefly discuss
METRICFORENSICS’ data model for representing volatile graphs.

3.1 Data Model for Volatile Graphs

Highly volatile graphs, by definition, accumulate mas-
sive numbers of vertices and edges over time. However,

during a given window of time, only a fraction of these ver-
tices and edges are active. The METRICFORENSICS data model
takes advantage of this behavior.

3.1.1 Snapshot Graphs
A snapshot graph is defined by its vertices Vt and edges Et,

which are active at time t. A snapshot graph can be viewed
as an N×N adjacency matrix representing the graph at time
t. The dynamic system is then comprised of many such ma-
trices in sequence. Each time a vertex is added or deleted, or
an edge appears or disappears, or an edge-weight is changed,
a new snapshot graph is generated.

3.1.2 Summary Graphs
Due to the high volatility of the data, it is neither compu-

tationally feasible nor analytically worthwhile to consider
snapshot graphs in isolation. A summary graph summarizes
all snapshot graphs a during time period T . It is represented
by its vertices VT and edges ET . Many strategies are avail-
able for combining snapshot graphs, including:

• Binary: An unweighted edge (i, j) exists in the sum-
mary graph GT if (i, j) exists in at least one snapshot
graph during T .

• Sum: A weighted edge w(i, j) exists in the summary
graph GT if (i, j) exists in any snapshot graph during
T . Then, w(i, j) is the sum of the weights of edges
active at the beginning and during the interval T .

• Max: Similar to Sum except that w(i, j) is the maxi-
mum value of element aij in the adjacency matrices of
snapshot graphs for time interval T .

The frequency with which summary graphs are gener-
ated and analyzed is a parameter in METRICFORENSICS, and
plays an important role in the multi-level component of the
framework (see Section 3.4). Summary graphs can be gen-
erated after a fixed number of distinct snapshot graphs or
after a fixed period of time. Our experiments demonstrate
that the framework works across a reasonably large set of
summary graph frequencies, and as a heuristic we tend to
choose the frequency so that each summary graph repre-
sents no more than 100,000 unique snapshot graphs. See
Section 4 for details.

3.2 Suite of Graph Metrics

At the heart of METRICFORENSICS is a suite of graph
metrics. These metrics are of varying levels of complex-
ity and computational intensity. They are broadly classified
into three groups based on their topological granularity: (1)
global, (2) community, and (3) local. The framework is readily
extendable to include any graph metrics. Moreover, it is not
necessary to run all the metrics at all times.

3.2.1 Global Metrics
At the coarsest topological level, global metrics generally

measure high-level properties of the graph and are largely
agnostic to properties at the individual vertices. Table 1 list a
subset of METRICFORENSICS’ global metrics. Several listed
metrics have both unweighted and weighted versions; only
the unweighted version is listed here. Most are very fast to
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Figure 1. METRICFORENSICS’ Flowchart

calculate, scaling linearly with the number of active vertices
(NT = |VT |) or edges (MT = |ET |) in the time interval T .
Currently, all of our implemented global metrics have com-
plexity at most O(NT log NT + MT ).

3.2.2 Community Metrics
A second collection of metrics examine the graph at its

community-structure level. These algorithms are typically
more computationally expensive than the global metrics. Many
approaches to community discovery in graphs exist [17]. The
results presented in Section 4 are based on Cross-Associations
(XA) [9]. Regardless of the chosen community discovery al-
gorithm, the metrics are similar.

Some community metrics are static, such as the fraction
of vertices in the largest community or the number of com-
munities. Others track changes in community structure, such
as the variation of information [20] between successive as-
signments. If a particular vertex is of interest, then changes
in its community can be easily tracked between successive
summary graphs.

3.2.3 Local Metrics
The final group of metrics focuses on individual vertices.

Local metrics often run too slowly to be applied to every
vertex in each summary graph. Examples of local metrics
include centrality metrics, OddBall [2], and impact metrics
(e.g., leaving a single vertex out of the graph and recalculat-
ing other metrics to determine the impact of the vertex).

3.3 Collection of Analysis Techniques

The second component of METRICFORENSICS is a collec-
tion of analysis techniques. Broadly speaking, they fall into
three categories: (1) single metric analysis, (2) coupled metric
analysis, and (3) non-metric analysis. This component is sim-
ilar to the suite of metrics in that it can easily accommodate
new techniques.

3.3.1 Single Metric Analysis
Values for an individual metric across multiple summary

graphs can be viewed as a time series. METRICFORENSICS
leverages the multitude of time series analysis techniques
to identify behaviors, events, and anomalies. For example,

an Autoregressive Moving Average Model (ARMA) can be
used to identify metric values that are abnormally large or
small given recent values. Fourier analysis can identify pe-
riodic behavior, such as daily trends in graph properties.
Wavelet analysis tools such as BGP-lens [28] identify pat-
terns and anomalies in metric values. Other single-metric
tools include lag plots, outlier detection techniques such as
Local Outlier Factor [6] and fractal dimension analysis [5].

3.3.2 Coupled Metric Analysis
Techniques in this category consider two or more metrics

in unison. The simplest such technique is correlation anal-
ysis. If K metrics are computed for a series of summary
graphs, a K × K matrix, C, can be computed where Cij is
say the Pearson correlation between metrics i and j. Large
values of |Cij | can identify redundant metrics. If such met-
rics vary widely in runtime complexity, then the slower ones
can be omitted from future calculations. However, it is often
useful to retain both metrics; if the computed values of two
metrics typically demonstrate high correlation, a sequence
of summary graphs that shows lower correlation is identi-
fied as an interesting event.

A useful example of coupled metric analysis involves var-
ious summary-graph edge-weighing strategies (Section 3.1.2).
In particular, if metrics are computed simultaneously on sum-
mary graphs constructed using different strategies, such as
Sum and Max, the resulting time series data are often highly
correlated. In this case, a summary graph for which the
metric-values do not demonstrate their typical relationship
can be identified as an interesting event.

Other techniques can be applied to coupled metric data,
such as outlier detection or clustering. For example, a clus-
tering algorithm like k-means can be applied to two time
series. Small clusters are labeled as interesting events or be-
haviors (see Section 4 for details).

3.3.3 Non-Metric Analysis
Techniques in this category do not involve the computed

metrics 3.2. These techniques are not applied until an inter-
esting event is discovered using the above techniques, but
they are often useful for understanding the events. The pri-
mary existing techniques in this category are visualization
tools and attribute data inspection.
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Group Metric Time Complexity Notes
Basic Properties num_vertices O(1) Number of active vertices
Basic Properties num_edges O(1) Number of active edges
Basic Properties avg_deg O(1) Average vertex degree
Basic Properties avg_wgt O(1) Average edge weight
Basic Properties max_deg O(NT ) Maximum vertex degree

Connectivity Metrics num_comps O(MT ) Number of connected components
Connectivity Metrics max_comp O(MT ) Fraction of vertices in the largest component
Connectivity Metrics art_pts O(MT ) Number of articulation points
Connectivity Metrics mst_wgt O(MT ) Minimum spanning tree weight

Spectral Metrics k_lambdas O(NT k2 + MT k) Largest k eigenvalues of the adjacency matrix
Stability Metrics delta_v O(NT ) Jaccard(VT , VT−1)
Stability Metrics delta_e O(MT ) Jaccard(ET , ET−1)
Stability Metrics delta_topK O(NT ) Jaccard coefficient of k highest degree vertices from T − 1 and T

Table 1. A subset of METRICFORENSICS’ suite of global graph metrics

METRICFORENSICS currently includes a novel 3D visual-
ization tool that can display summary graphs rapidly and
in an informative layout. It highlights vertices with high
connectivity, and is used to quickly characterize a sequence
of summary graphs that have been identified as interesting.
The tool uses position (source vs. target vertex), size, and
color to differentiate between vertices according to a user-
specified collection of attributes. For example, the size of a
vertex can show its degree, while the color can depict the
vertex’ betweenness centrality. See Figure 3a for a 2D snap-
shot of a summary graph by our visualization tool.

The second non-metric analysis technique involves in-
spection and processing of available attribute data. Vertices
and edges in volatile graphs can have attributes. In some
cases, more detailed attributes may be available at an in-
creased cost of access. These should be retrieved only when
necessary. For example, IP communication traces often have
at least partial packet contents, but these are usually not
available for fast inspection. While it is not feasible to con-
sider every packet in detail, METRICFORENSICS can iden-
tify periods of time and sets of edges that may be of interest
based on graph metrics or community structure. A user can
then apply a full pcap analysis tool to the identified regions.

3.4 A Multi-Level Approach

METRICFORENSICS’s multi-level approach allows for ef-
ficient use of computational resources. Due to the volatile
nature of our data (e.g., IP network traces) and the varying
complexity of metrics and analysis techniques, it is neces-
sary to rely on lightweight techniques at coarse granularities
(both temporally and topologically) to identify regions of in-
terest, and then apply complex algorithms and tools only to
interesting regions. METRICFORENSICS uses multiple levels
in three distinct dimensions: (1) time, (2) topology, and (3)
analysis automation.

The general approach involves performing METRICFOREN-
SICS’s metrics and analysis multiple times at different levels,
starting with the coarsest and becoming finer at each itera-
tion. Only those time periods identified as interesting in a
coarse level are passed down to be analyzed at the next finer
level. We generally identify three levels, based on the topo-

logical granularity levels (namely, global, community, and
local). However, METRICFORENSICS supports any number
of levels based on time granularity.

3.4.1 Time Granularity
The temporal scale of METRICFORENSICS can be controlled

in two ways. (1) the period of time in which summary graphs
are analyzed can be adjusted. At the coarsest level, METRIC-
FORENSICS operates on all available data, which in many
cases can include streaming data. When an event is de-
tected, only the relevant portion of the data is examined at
finer levels.1 (2) temporal granularity is adjusted by modi-
fying the interval between summary graphs. At the coars-
est level, summary graphs are generated less often than in
finer levels. This “drill-down” approach is used to pinpoint
changes in behavior of specific vertices (i.e., do attribution).

3.4.2 Topological Granularity
The axis of refinement here involves which set of graph

metrics are applied. At the coarsest level, only the global
topology of the graph is considered. Communities and in-
dividual nodes are not generally considered, with the ex-
ception of a small number of global statistics that track the
identities of high-degree vertices (such as delta_topK in Ta-
ble 1). The global metrics are scalable and can be computed
efficiently on each summary graph. When an event is dis-
covered at this level, the period of interest is passed to the
next (finer) level.

At the finer (regional) level, community-level metrics are
calculated. By identifying communities that exhibit change,
METRICFORENSICS can discard many vertices that have not
changed their behavior. This information is subsequently
used at the finest level of refinement, where local metrics
are computed on vertices in the identified communities.

3.4.3 Analysis Automation Levels
The final difference between levels in METRICFORENSICS

is the selection of analysis techniques. Some techniques,

1In a streaming setting, this is accomplished by maintaining
a circular buffer that stores a fixed number of recent snap-
shot graphs.
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such as ARMA, are fully automated. These can be applied at
any refinement level. Other tools and techniques like visu-
alization and attribute analysis require user interaction and
should only be applied to small sets of summary graphs.

4. Experiments

We implemented METRICFORENSICS and ran experiments
to answer the following questions: (1) Can METRICFOREN-
SICS detect interesting events including anomalies? (2) Do the
discovered interesting events tell us something new about the na-
ture of volatile graphs? (3) Is METRICFORENSICS scalable and
amenable to real-time (or near real-time) execution?

Table 2 describes the graphs we used in our experiments.
ENTP is a IP traffic collected at the perimeter of an enter-
prise network over 4.5 days in 2007. RMBT is the MIT Real-
ity Mining’s blue-tooth connections collected over 12 months.2

LBNL is IP traffic collected on an internal enterprise net-
work on 2004/12/15 on port #3.3 It includes scanning ac-
tivities.

4.1 Experiments at the Global Level

We discuss some experiments at the global-level of our
volatile graphs here. For brevity, we have removed many of
results (such as ones from our FFT and wavelet analyses).

4.1.1 Eigen Analysis
Figure 2 depicts the two largest eigenvalues in the ENTP

summary graphs. In particular, it shows the λ1, λ2 rela-
tionship under three different edge-weighing strategies. In
the maximum connections strategy, the weight between ver-
tices i and j is equal to the maximum number of simultane-
ously active connections between i and j during the sum-
mary graph’s time interval T . Under the number of connec-
tions strategy, the weight between i and j is equal to the
number of active connections between i and j when T started
plus the number of connections between i and j during T .
In the sum of bytes strategy the weight between i and j is the
normalized sum of the flow-weights (i.e., number of bytes
sent and received) when T started and the weights of flows
that occurred between i and j during T . Regardless of the
summary graphs’ edge-weighing strategy, there are special
regions where λ1 is stable and λ2 is changing, or vice versa.
We also observe these special regions in the LBNL trace (see
Figure 3), where they are elbow-shaped.

The large eigenvalues of a weighted graph typically cor-
respond to either a single heavy edge, a vertex with high
weighted degree, or a component with a large total weight.
Thus, when we see a period of time when λ1 is changing
but λ2 is steady, it is a result of the currently dominant phe-
nomenon changing while the secondary phenomenon is sta-
ble (e.g. a single heavy edge changing weight while the
structure of the giant component is steady). We refer to
this as the “elbow” pattern because it appears as elbow-
like structures (Figure 3). A trivial example here is a pair

2http:reality.media.mit.edu/
3http://www.icir.org/enterprise-tracing/download.html

Figure 4. The top-10 graph metrics correlated
with λ1 in the ENTP data. The sharp drop
in correlation in Region 1 of Figure 2 is very
interesting and depicts a broken correlation.

of heavy edges, (a, b) and (c, d), with w(c, d) > w(a, b) ini-
tially. If w(a, b) remains constant and w(c, d) decreases such
that eventually w(c, d) < w(a, b), the corresponding eigen-
values will switch so that λ1 is always correlated with the
larger-weight edge. Thus, during the initial period λ1 tracks
the changing w(c, d); but once w(c, d) < w(a, b), λ1 becomes
stable and λ2 tracks the (c, d) edge.

Depending on the edge-weighting strategy employed, these
periods may appear simply as horizontal or vertical sections
(Figure 2) or they may appear as elbows (Figure 3). Regard-
less, the observed behavior is one phenomenon (heavy edge,
heavy vertex, or heavy component) that is changing while
another phenomenon remains stable.

4.1.2 Correlation Analysis
We computed the pairwise Pearson correlation coefficients

between values of global metrics. For example, given sum-
mary graphs GT0 · · ·GTt we computed

r([λ
GT0
1 · · ·λGTt

1 ], [max_wgtGT0 · · ·max_wgtGTt ])

where max_wgt is the maximum edge weight. Figure 4 de-
picts the top-15 most correlated global metrics with λ1 for
the ENTP data. It shows that normally λ1 is highly corre-
lated with maximum edge weight; however in Region 1 of
Figure 2a (where λ1 is stable but λ2 is changing), this cor-
relation disappears. Indeed λ1 is not correlated with any
graph metric in this region. We observed this behavior on
other data sets and other eigenvalues. For instance, λ2 is
highly correlated with the fraction of vertices in the largest
component, except in regions like Region 2 of Figure 2. In
these special regions (where λ1 is changing but λ2 is stable),
λ2 is highly correlated with number of additions, number
of updates, and number of deletions. We refer to this phe-
nomena as “broken correlations” and observe that there is
are meta-level correlations between broken correlations and
elbow patterns described above.

4.1.3 Fractal Dimension Analysis
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Data Graph Observation Time # of Source Vertices # of Target Vertices # of Total Vertices # Unique Edges # Total Edges
ENTP 4.5 days 1,748,750 1,733,521 2,928,116 6,597,251 31,855,024
RMBT 12 months 94 25,490 25,491 55,898 1,982,576
LBNL 1 hour 3,268 2,837 3,317 15,577 9,258,309

Table 2. Summary of real-world networks used.

(a) Maximum Connections Strategy (b) Number of Connections Strategy (c) Sum of Bytes Strategy

Figure 2. λ2 versus λ1 under various edge-weighing strategies in the ENTP summary graphs (gener-
ated every 30 seconds). x-axis is λ1 in log-scale; y-axis is λ2 in log-scale. The color of a dot is the
time that it was observed (in minutes): pink/light blue is earlier, red/dark purple is later. Regardless
of the summary graphs’ edge-weighing strategy, there are interesting regions with elbow patterns
where λ1 is stable and λ2 is changing, or vice versa.

(a) Graph at 2004.12.15 20:06:51.348 (b) λ1 vs. λ2

Figure 3. (a) The LBNL graph at 2004.12.15 20:06:51.348. The vertex colors indicate the recent
position of the vertex: source (green) vs. destination (red). The elevation represents the same role
but considers the entire history of the vertex. If the vertex is quiet, it slowly moves from green or red
back to black; but will not change elevation. The IPs with names either have high weight at 2004.12.15
20:06:51.348 or have had high weight within the last 50 seconds. High weight is defined as 50% of
the current maximum weight in the graph. (b) λ2 versus λ1 in the LBNL summary graphs (generated
every 5 seconds with sum-of-flows strategy). x-axis is λ1 in log-scale; y-axis is λ2 in log-scale. The
elbow patterns occur when the dominant phenomenon and the secondary phenomenon swap roles.

Intuitively, the fractal dimension [5] measures the bursti-
ness of a collection of points. In our case, the points are in
1-dimensional space and correspond to communications at

different times. For points that are uniformly distributed in
time, the fractal dimension is near the dimensionality of a
line, i.e. D ≈ 1. For points that are all on the same time-tick

LLNL-CONF-432792



(creating a single burst), the fractal dimension is the dimen-
sionality of a point, D = 0. The Cantor set (constructed by
recursively deleting the middle third of a line segment) has
fractal dimension D = log(2)

log(3)
≈ 0.63. Packets due to hu-

man behavior typically have fractal dimension somewhere
in [0.7, 0.9] (with self-similar bursts at different time scales).

We computed the fractal dimensions of several graph met-
rics on our summary graphs (which can be regarded as a
cloud of points on the time axis). Fractal dimensions were
calculated for (disjoint) windows of width w = 3 hours on
the ENTP data, w= 5 minutes on the LBNL data, and w =10
days on the RMBT data. The fractal dimension was sta-
ble for most time periods, around 0.9 on ENTP and LBNL
and around 0.8 on RMBT data. This result suggests that
RMBT data is more bursty than others. Interestingly, the
fractal dimensions for some metrics (such as number of ad-
ditions, number of deletions, number of updates, and num-
ber of edges connecting to an IP outside the enterprise) sud-
denly drop to 0.6-0.8 in some periods on the ENTP data (Fig-
ure 5a). Specifically, the fractal dimension of the number
of additions suddenly drops down in the early morning on
2007.11.15 (between 6 AM to 9 AM); Figure 5b shows the
magnification of that interval, illustrating that the drop is
due to a “prolonged spike”: activity that has low-volume,
but persists for a long time. We also observed this phenom-
ena with wavelet analysis and the BGP-lens package [28],
but we omit the wavelet analysis, for lack of space.

4.2 Experiments at the Community Level

When at the global-level a summary graph is flagged as
interesting, the next step is to analysis the flagged summary
graph at their community-level. Figure 6a depicts the pair-
wise plot of λ1 and the fraction of source nodes in the largest
XA row-group (a.k.a. row-group fraction) during Region 1
from Figure 2. The points are clustered by k-means with
k = 8, which produces five singleton clusters, one cluster
of size 6, one cluster of size 37, and another one of size 352.
While the singleton clusters and the small cluster of 6 are
detectable from λ1, the larger clusters have nearly identi-
cal centroids in λ1 but are separable by their XA row-group
assignments. For those Summary Graphs in the cluster of
size 37, vertices in the largest row-group are marked as sus-
picious. Figure 6b shows an exponential moving average
of the XA row-group variation-of-information (where lower
values indicate more stable community structures) in LBNL.
As pointed out by the red arrow, there is a noticeable dip be-
tween 750 and 1100 seconds from the start of the hour when
communities are very stable. Figure 6c illustrates the XA
row group variation of information against the same mea-
sure on column groups. We observe that they are corre-
lated, but there are also instances for which one is abnor-
mally high or low given the other (i.e., points in the dashed
red circles). These indicate that there vertices whose row-
groups are changing but not their column-groups (i.e., they
are changing their behavior as source vertices but not as tar-
get vertices), and vice versa.

4.3 Experiments at the Local Level

When METRICFORENSICS detects interesting events in the
given stream of summary graphs, it can zoom into those
interesting graphs and perform more rigorous analysis. In
such cases, the main goal is to find interesting (extreme, out-
lying, suspicious) vertices in a graph. To do so, features from
the neighborhood of vertices are extracted. In particular,
given a vertex, its neighbors, and the connections between
them (a.k.a. the induced 1-step subgraph of the vertex or the
egonet), METRICFORENSICS can employ a local-level analy-
sis tool like oddball [2]. Oddball computes the number of
edges, the total weight of edges, etc and defines the vertices
as points in a multi-dimensional feature space, in which it
looks for anomalies.

Figure 7a shows the number of edges versus the number
of vertices in the egonets of RMBT. Each point in the scat-
ter plot corresponds to a particular vertex. Here, the dashed
blue line with slope 2 corresponds to cliques for which the
number of edges is O(N2) and similarly the dashed black
line corresponds to stars. We observe that most of the points
lie on the blue line which indicates that a vast majority of
vertices have neighborhoods that look like a clique. For
RMBT, this is intuitive; all blue-tooth devices in a specific
region will “see” each other, and hence form cliques. On
the other hand, we also observe a second cluster of nodes
that are neither cliques nor stars. The outlier points here
are the black and the blue triangles, which indicate two big
strange stars. Figure 7b shows the total edge-weight versus
degree in RMBT. Here, the weights denote the number of
times two devices where close enough to connect to each
other. We again observe that vertices form two clusters.
The two triangles shown in the circle are the same points
as the ones discussed earlier in Figure 7a. These vertices not
only form very big star-like structures, but also their total
edge-weights are lower than expected. We refer to these as
“strange stars.”

We performed similar analysis on the LBNL graph, where
the vast majority of the vertices form star-like structures.
This is intuitive since our LBNL data is a sample of the net-
work traffic over a limited amount of time (≈1 hour), so
have partial information about the interaction between all
vertices. Figure 7c and 7d show the total weight versus the
number of edges in the egonets of nodes in the LBNL graph
without and with scanning activities, respectively. Here the
weights denote the total number of packets sent between
pairs of machines. On each plot, we show the top 100 anoma-
lies we detected using a simple metric of the distance from
the fitting line. We note that, we were able to detect non-
scanner vertices that sent much fewer packets than expected
compared to the number of machines they connected with
(point shown in square on the figures) as well as detect scan-
ners with a similar behavior: fewer packets than the norm
over links (points shown in circle on the same figures).

For the ENTP data, we observed a massive increase (of
10x) in communications around 9 AM on 2007.11.12. Look-
ing at the flow data, we observed a pair of machines that
opened over 10K connections in about a minute on a Bit-
Torrent related port. Moreover in early morning hours of
2007.11.13, we observed an order of magnitude increase in
λ1 but didn’t see a corresponding jump in λ1 computed on
the unweighted summary graph. This was a case where
looking at traffic volume alone could not detect the single
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Figure 5. Fractal Dimension Analysis on ENTP data (best viewed in color). Bi-plots: Number of
updates (in red) and fractal dimension D (in green), versus time-stamp. (a) the full interval of analysis
- note the drop of fractal dimension around 6 AM on 2007.11.15. (b) shows the magnification of the
suspicious region, which has a “prolonged spike” (low volume, but prolonged activity-level).

(a) ENTP: k-Means Clusters for (b) LBNL: Row-Group’s (c) RMBT: Variation-of-Information
Row-Group Fraction vs. λ1 Variation-of-Information on Column- vs. Row-Group

Figure 6. Community-Level Experiments with Cross-Associations (XA). (a) During Region 1 (shown
in Figure 2a), ENTP has behaviors that can be detected using XA (red cluster) but not using other
metrics (λ1 shown). (b) For the LBNL data, there is a pronounced increase in community stability
for about 5 minutes. (c) RMBT includes times where source vertices form stable communities but
targets do not, and vice versa as encircled by the dashed red ovals.

(a) RMBT: Ee vs. Ne (b) RMBT: W vs. degree (c) LBNL’: We vs. Ee (d) LBNL: We vs. Ee

Figure 7. Local-Level Experiments with OddBall. LBNL’ is the LBNL data without scanning activity.
For a given vertex, W and Degree are its sum of edge-weights and its number of neighbors, respec-
tively. Ne and Ee are the number of vertices and edges in a vertex’ egonet, respectively. We is the total
weight of all edges in a vertex’ egonet. The vertices circled have strange star-like neighborhoods.

heavy edge that caused λ1 to spike for several minutes. For
brevity, we omit the plots for these.

5. Conclusions

Volatile graphs (such as IP-to-IP communication graphs)
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are becoming more ubiquitous in network science applica-
tions. Challenges associated with mining of such graphs
include dealing with an ever-changing graph, analysis in
streaming or real-time fashion, and analysis at multiple tem-
poral and topological granularities. In this paper, we pre-
sented METRICFORENSICS: a multi-level framework for min-
ing volatile graphs that addresses the aforementioned chal-
lenges. Its strong points are the following:

• METRICFORENSICS is effective, capable of spotting sus-
picious patterns like the “elbow” pattern, prolonged
spikes, broken correlations, and more.

• It is scalable, with carefully chosen operations, fast-to-
compute components (eigenvalues, wavelets, etc), and
global-to-local architecture, for efficient runtimes.

• It is flexible, general and extensible, with room for many
more components, in addition to ones used (fractal anal-
ysis, oddBall, wavelets, etc.)

We illustrated the generality and applicability of MET-
RICFORENSICS on several large (up to ∼32M edges) real-
world volatile graphs.
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